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Ideals, Filters, and Supports in
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Ideals, filters, local ideals, local filters, and supports in pseudoeffect algebras are defined
and studied.
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1. INTRODUCTION AND PRELIMINARIES

In the beginning of 1990s, Kˆopka and Chovanec (1994) have presented a new
axiomatic model, difference posets. First this idea was applied to fuzzy set ideas
in quantum mechanics and then presented in general algebraic form. Difference
posets generalize quantum logic, orthoalgebras, as well as the set of all effects (i.e.
the system of all Hermitian operatorsA on a Hilbert spaceH with O ≤ A ≤ I ),
which are important for modeling unsharp measurement in a Hilbert space quantum
mechanics. A big advantage of difference poset is the possibility of handling self-
orthogonal events. In 1994, Pulmannov´a, Foulis (Foulis and Bennett, 1994) and
other authors studied a structure, now called an effect algebra, with a primary
operation⊕ slightly generalizing orthoalgebras. Herea⊕ b is defined only for
mutually excluded eventsa andb. But, as stressed, difference posets and effect
algebras are practically the same thing, because⊕ can be uniquely derived from
ª to be an effect algebra and vice versa.

In 2001, Dvureˇcenskij and Vetterlein (2001) introduced a structure of pseudo-
effect algebras which generalize the effect algebras by dropping the commutativity.
Unfortunately, not much is known about this structure.

In general, logicians often prefer to deal with filters which can be presumed
to represent the modality of necessity or truth, algebraists generally prefer to think
in terms of ideal which often figure prominently in representation theory (see
Chovanec and Rybarikova (1998), Foulis, Greechie, and Ruttimann (1992)). The
aim of this paper is to consider the ideals and filters in pseudoeffect algebras. In
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the last section supports, local filters, and local ideals in pseudoeffect algebras are
introduced and studied. These would help us to investigate the structure theory of
pseudoeffect algebra much better.

A structure (E ,+, 0, 1), where “+” is a partial binary operation and 0 and 1
are constants, is called apseudoeffect algebraif, for all a, b, c ∈ E , the following
hold:

(E1)a+ b and (a+ b)+ c exist if and only ifb+ c anda+ (b+ c) exist, and in
this case, (a+ b)+ c = a+ (b+ c);

(E2) There is exactly oned ∈ E and exactly onee∈ E such thata+d = e+a = 1;
(E3) If a+ b exists, there are elementsd, e∈ E such thata+ b = d + a = b+ e;
(E4) If 1+ a ora+ 1 exists, thena = 0.

If the hypotheses of (E1) are satisfied, we writea+ b+ c for the element
(a+ b)+ c = a+ (b+ c).

In view of (E2), we may define the two unary operations∼ and− by requiring
for anya ∈ E

a+ a∼ = a− + a = 1.

The following statements have been proved in Dvureˇcenskij and Vetterlein
(2001).

Proposition 1.1. Let (E ,+, 0, 1)be a pseudoeffect algebra. For all a, b, c ∈ E
we have the following:

(1) a+ 0= 0+ a = a (i.e.0 is a neutral element);
(2) a+ b = 0 implies a= b = 0 (positivity);
(3) 0∼ = 0− = 1, 1∼ = 1− = 0;
(4) a∼− = a−∼ = a;
(5) a+ b = a+ c implies b= c, and b+ a = c+ a implies b= c (concel-

lation laws);
(6) a+ b = c iff a = (b+ c∼)− iff b = (c− + a)∼.

Definition 1.2 Let (E ,+, 0, 1) be a pseudoeffect algebra. We define fora, b ∈ E
a ≤ b iff a+ c = b for some c ∈ E .

Note that, from (E3), it is clear that

a ≤ b iff d + a = b for some d ∈ E .

Proposition 1.3. (Dvurečenskij and Vetterlein, 2001). Let(E ,+, 0, 1)be a pseu-
doeffect algebra. The following hold inE for all a, b, c, d ∈ E :
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(1) ≤ is a partial order onE ;
(2) a ≤ b iff b− ≤ a− iff b∼ ≤ a∼. That is,∼ and− are isomorphisms of the

order ofE onto the dual order ofE ;
(3) If a + b exists, c≤ a, and d≤ b, then c+ d exists;
(4) a+ b exists iff a≤ b− iff b ≤ a∼;
(5) Suppose b+ c exists. Then a≤ b if and only if a+ c exists and a+ c ≤

b+ c. Suppose c+ b exists. Then a≤ b if and only if c+ a exists and
c+ a ≤ c+ b.

2. IDEALS AND FILTERS IN PSEUDOEFFECT ALGEBRAS

In this section we study ideals and filters in pseudoeffect algebras. In what
follows E will be a pseudoeffect algebra.

We begin with

Definition 2.1 A nonempty subsetI ⊆ E is called an idea (inE) if

(I1) a ∈ I , b ∈ E , b ≤ a impliesb ∈ I ;
(I2) a ∈ I , b ∈ E , a ≤ b, and either (b− + a)∼ ∈ I or (a+ b∼)− ∈ I implies

b ∈ I .

Definition 2.2 A nonempty subsetF ⊆ E is called a filter (inE) if

(F1)a ∈ F, b ∈ E , a ≤ b impliesb ∈ F ;
(F2)a ∈ F, b ∈ E , b ≤ a, and eithera− + b ∈ F or b+ a∼ ∈ F impliesb ∈ F .

An ideal I (resp. a filterF) is proper if 1 /∈ I (resp. 0/∈ F).
It is obvious that 0∈ I for any idealI and 1∈ F for any filter F in E .

Theorem 2.3 A nonempty subset I⊆ E is an ideal if and only if
(I1) x ∈ I , y ∈ E , y ≤ x implies y∈ I ;
(I2′) x ∈ I , y ∈ I , x ≤ y∼ implies y+ x ∈ I .

Proof: It suffices to show the equivalence between (I2) and (I2′).
(I2) ⇒ (I2′). Suppose thatx ∈ I , y ∈ I , andx ≤ y∼. By Proposition 1.3,

y+ x exists. Now leta = x, b = y+ x, thena ≤ b and (a+ b∼)− = [x + (y+
x)∼]− = (y∼)− = y ∈ I , hence, by (I2), we haveb = y+ x ∈ I .

(I2′)⇒ (I2). If a ∈ I , b ∈ E , a ≤ b, and (b− + a)∼ ∈ I , letx = a, y = (b− +
a)∼, then x ∈ I , y ∈ I , and y− = b− + a = b− + x, hencex ≤ y−, therefore
y ≤ x∼. Thus we havex + y ∈ I . But x + y = a+ (b− + a)∼ = b, and sob ∈ I .

For the case ofa ∈ I , b ∈ I , and (a+ b∼)− ∈ I , one can letx = a andy =
(a+ b∼)−. Now the rest of the proof goes similarly. ¤
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Theorem 2.4 A nonempty subset F⊆ E is a filter if and only if
(F1) x ∈ F, y ∈ E , x ≤ y implies y∈ F ;
(F2′) x ∈ F, y ∈ F, y∼ ≤ x implies(y∼ + x∼)− ∈ F.

Proof: (F2)⇒ (F2′). If x ∈ F, y ∈ F , andy∼ ≤ x, leta = x, b = (y∼ + x∼)−.
From (y∼ + x∼)− + y∼ + x∼ = 1, we have (y∼ + x∼)− + y∼ = x. Hence (y∼ +
x∼)− ≤ x, that is,b ≤ a. Sincea− + b = [(y∼ + x∼)− + y∼]− + (y∼ + x∼)− =
y, soa− + b ∈ F , which leads to (y∼ + x∼)− = b ∈ F .

(F2′)⇒ (F2). Now suppose thata ∈ F, b ∈ E , b ≤ a, anda− + b ∈ F . Let
x = a, y = a− + b, thenx ∈ F, y ∈ F . It is evident thata− + b+ (a− + b)∼ =
1, which implies thatb+ (a− + b)∼ = a, hencey∼ = (a− + b)∼ ≤ a = x. There-
fore (y∼ + x∼)− ∈ F . Since (y∼ + x∼)− = [(a− + b)∼ + (b+ (a− + b)∼)∼]− =
(b∼)− = b, and sob ∈ F .

For the case ofx ∈ F, b ∈ E , b ≤ a, andb+ a∼ ∈ F , with the similar argu-
ment above one can complete the proof. ¤

Theorem 2.5 If I ⊆ E is a proper ideal and a∈ I , then neither a− nor a∼ is
in I .

Proof: Assume on the contrary thata− ∈ I . Let x = a, y = a−, thenx = a =
y∼. By (I2′), we havey+ x = a− + a = 1 ∈ I , a contradiction. ¤

Similarly we have

Theorem 2.6 If F ⊆ E is a proper filter and a∈ F, then neither a− nor a∼ is
in F.

Theorem 2.7 Let I be a proper ideal of a pseudoeffect algebraE , then both
I − = {a− : a ∈ I } and I∼ = {a∼ : a ∈ I } are proper filters.

Proof: (1) If a ∈ I −, b ∈ E , anda ≤ b, then there isx ∈ I such thatx− = a,
hencex− ≤ b, and equivalentlyb∼ ≤ x, which yields thatb∼ ∈ I , therefore
b = (b∼)− ∈ I −.

Suppose thata ∈ I −, b ∈ E , b ≤ a, and a− + b ∈ I −. Then there existx
andy in I such thatx− = a andy− = a− + b. Theny = (a− + b)∼, anda = b+
(a− + b)∼ sincea− + b+ (a− + b)∼ = 1. Thereforey ≤ a = x−, that is,x ≤ y∼.
By (I2′), we obtainy+ x ∈ I . But y+ x = (a− + b)∼ + [b+ (a− + b)∼]∼ = b∼

and sob∼ ∈ I , furthermore,b = (b∼)− ∈ I −.
If a ∈ I −, b ≤ E , b ≤ a, andb+ a∼ ∈ I −, we can findx and y in I such

thatx− = a andy− = b+ a∼. Thenx = a∼ andy− = b+ x, hencex ≤ y−, i.e.,
y ≤ x∼. By (I2′), we getx + y ∈ I . Sincx + y = a∼ + (b+ a∼)∼ = b∼, we have
b = (b∼)− ∈ I −.
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(2) We now prove thatI ∼ is a proper filter.
If a ∈ I ∼, b ≤ E , anda ≤ b, then there isx ∈ I such thata = x∼. We have

b− ≤ x asa ≤ b. SinceI is an ideal, we haveb− ∈ I , moreover,b = (b−)∼ ∈ I ∼.
Suppose thata ∈ I ∼, b ∈ E , b ≤ a, and a− + b ∈ I ∼. Then we can find

x, y ∈ I such thatx∼ = a andy∼ = a− + b. Theny∼ = x + b, which implies that
x ≤ y∼. Applying (I2′) we havey+ x ∈ I . Thereforeb− = (a− + b)− + a− =
y+ x ∈ I , and sob = (b−)∼ ∈ I ∼.

If a ∈ I ∼, b ∈ E , b ≤ a, andb+ a∼ ∈ I ∼. Then there existx andy in I such
thatx∼ = a andy∼ = b+ a∼. From (b+ a∼)− + b+ a∼ = 1, we havea = (b+
a∼)− + b, hencey = (b+ a∼)− ≤ a = x∼. By (I2′), we havex + y ∈ I . As x +
y = [(b+ a∼)− + b]− + (b+ a∼)− = b−, thenb = (b−)∼ ∈ I ∼, this completes
the proof. ¤

Theorem 2.8 Let F be a proper filter of a pseudoeffect algebraE , then both
F∼ = {a∼: a ∈ F} and F− = {a−: a ∈ F} are proper ideals.

Proof: If x ∈ F∼, y ∈ E , andy ≤ x, thenx = a∼ for somea ∈ F . And soy ≤
a∼, that is,a ≤ y−, hencey− ∈ F , thereforey = (y−)∼ ∈ F∼.

Now suppose thatx ∈ F∼, y ∈ F∼, andx ≤ y∼. We can finda, b ∈ F such
thatx = a∼ andy = b∼. We havey ≤ x− sincex ≤ y∼. And sob∼ ≤ (a∼)− = a.
By (F2′), we have (b∼ + a∼)− ∈ F , i.e. (y+ x)− ∈ F , and soy+ x ∈ F∼. We
have shown thatF∼ is a proper ideal.

To complete the proof it remains to prove thatF− is a proper ideal too.
If x ∈ F−, y ∈ E , andy ≤ x. Thenx = a− for somea ∈ F , and soy ≤ a−,

this implies thata ≤ y∼, hencey∼ ∈ F andy = (y∼)− ∈ F−.
If x ∈ F−, y ∈ F−, and x ≤ y∼. Then we can choosea, b ∈ F such that

x = a−, y = b−. From x ≤ y∼, we havea− ≤ b, and equivalentlyb∼ ≤ a. By
Proposition 1.3,b− + a− and b∼ + a∼ exist. Sincea− + (b− + a−)∼ = b and
(b− + a−)∼ ≤ a, by (F2), we get (b− + a−)∼ ∈ F , hencey+ x = b− + a− =
[(b− + a−)∼]− ∈ F−. ¤

Corollary 2.9. Let I be a proper ideal and F be a proper filter in a D-poset
P. Then I⊥ = {a⊥ : a ∈ I } is a proper filter and F⊥ = {a⊥ : a ∈ F} is a proper
ideal inP.

Corollary 2.10. Let I and F be subsets of a pseudoeffect algebraE , then
(1) I − is a proper ideal if and only if I∼ is a proper ideal;
(2) F− is a proper filter if and only if F∼ is a proper filter.

Definition 2.11 LetE andF be two pseudoeffect algebras. A mappingφ : E → F
is said to be a pseudoeffect morphism if

(1) φ(1)= 1;
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(2) if a+ b exists inE , thenφ(a)+ φ(b) exists inF andφ(a+ b) = φ(a)+
φ(b).

If, in addition,φ is bijective andφ−1 is also a pseudoeffect morphism, then
φ is called a pseudoeffect isomorphism.

It is easy to verify the following proposition.

Proposition 2.12. LetE andF be two pseudoeffect algebras andφ : E → F be
a pseudoeffect morphism, then

(1) φ(0)= 0;
(2) φ(a−) = φ(a)− andφ(a∼) = φ(a)∼ for every a∈ E ;
(3) a ≤ b impliesφ(a) ≤ φ(b).

Theorem 2.13. LetE andF be two pseudoeffect algebras andφ : E → F be a
pseudoeffect morphism. LetK = {a ∈ E : φ(a) = 0}andY = {a ∈ E : φ(a) = 1},
thenK is a proper ideal andY is a proper filter inE .

Proof: If x ∈ K, y ∈ E , and y ≤ x. Then φ(y) ≤ φ(x). Since φ(x) = 0, so
φ(y) = 0, thereforey ∈ K.

Suppose thatx ∈ K, y ∈ K, andx ≤ y∼. Theny+ x exists andφ(y+ x) =
φ(y)+ φ(x) = 0, hencey+ x ∈ K.

As φ(1)= 1, so 1/∈ K, henceK is a proper ideal.
With the similar approach one can show thatY is a proper filter. ¤

Theorem 2.14. LetE andF be two pseudoeffect algebras andφ : E → F be a
pseudoeffect isomorphism, then I is an ideal inE if and only ifφ(I ) is an ideal in
F . Moreover, I is a proper ideal inE if and only ifφ(I ) is a proper ideal inF .

Proof: Notice thatφ preserves the partial order≤ in both directions. Now the
proof goes easily. ¤

Similarly we have

Theorem 2.15. LetE andF be two pseudoeffect algebras andφ : E → F be a
pseudoeffect isomorphism, then F is a filter inE if and only ifφ(F) is a filter in
F . Moreover, F is a proper filter inE if only if φ(F) is a proper filter inF .

3. SUPPORTS, LOCAL FILTERS, AND LOCAL IDEALS
IN PSEUDOEFFECT ALGEBRAS

Throughout this sectionE will be a pseudoeffect algebras. We first introduce
the definition of supports in pseudoeffect algebras as follows.
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Definition 3.1 A subsetS of E is called a support iff 0/∈ S and, for each pair
p, q ∈ E with p+ q exists inE ,

p+ q ∈ S⇔ {p, q} ∩ S 6= ∅.
Notice that the empty set∅ is a support. A nonempty support is called aproper

support. It is easy to see thatS is proper if and only if 1∈ S.

Theorem 3.2. Let S be a support inE . If a ∈ S, b ∈ E , and a≤ b, then b∈ S.

Proof: We note that ifa ≤ b then b = a+ (b− + a)∼. Now the proof goes
easily. ¤

Definition 3.3 A triple {p, q, r } in E is called a right triangle ifp+ r , q + r ,
p+ (q + r ), andq + (p+ r ) exist inE , and is denoted by1(p, qBr ).

A triple {p, q, r } is called a left triangle inE if r + p, r + q, (r + p)+ q and
(r + q)+ p exist inE , and we denote it by1(rCp, q).

We now define the local filters in pseudoeffect algebras.

Definition 3.4 A nonempty subsetF of E is called a loacal filter if for every right
triangle1(p, qBr ) in E

p+ r, q + r ∈ F ⇔ r ∈ F.

Dually we can also define.

Definition 3.4 A nonempty subsetF of E is called a local filter if for every left
triangle1(rCp, q) in E

r + p, r + q ∈ F ⇔ r ∈ F.

Indeed, we have the following.

Theorem 3.5. Definition3.4and3.4′ are equivalent.

Proof: We only prove Definition 3.4⇒Definition 3.4′, and the converse is anal-
ogous. Let1(rCp, q) be a left triangle inE . We can choosea, b ∈ E such that
r + p = a+ r andr + q = b+ r . It is easy to check thata = [r + (r + p)∼]−.
We claim that triple{a, b, r } is a right triangle. Indeed, by (r + p)+ q + [(r +
p)+ q]∼ = 1, we have (r + p)∼ = q + [(r + p)+ q]∼, henceq ≤ (r + p)∼.
From r ≤ r + p = [(r + p)∼]−, we can infer thatr + (r + p)∼ exists inE . By
Proposition 1.3, we haver + q ≤ r + (r + p)∼, and soa = [r + (r + p)∼]− ≤
(r + q)− = (b+ r )−. Again by Proposition 1.3, we conclude thata+ (b+ r )
exists inE . Similarly we can show thatb+ (a+ r ) exists inE , hence triple
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{a, b, r } is a right triangle. Now the rest of the proof is straightforward, so we
omit it. ¤

In fact in the proof above we have proved the following result.

Theorem 3.6. Let p, q, r, a, b be elements ofE . If p+ r = r + a and q+ r =
r + b, then{p, q, r } is a right triangle if and only if{a, b, r } is a left triangle.

Theorem 3.7. Every filter in pseudoeffect algebra is a local filter.

Proof: Let F be a filter and1(p, qBr ) a right triangle in pseudoeffect algebraE .
If r ∈ F , then, obviously,p+ r, q + r ∈ F . Suppose now thatp+ r, q + r ∈ F .
Let a = p+ r and b = r , thena ∈ F and b ≤ a. From [q + (p+ r )]− + q +
(p+ r ) = 1, we have [q + (p+ r )]− + q = (p+ r )−. Thena− + b = [q + (p+
r )]− + q + r ∈ F asq + r ∈ F andF is a filter. By condition (F2) in Definition
2.2, we haver = b ∈ F . ¤

If S is a support inE , we let

F (−)
S = {p ∈ E : p− /∈ S}.

and

F (∼)
S = {p ∈ E : p∼ /∈ S}.

The following theorem show the relation between supports and local filters.

Theorem 3.8. Let S be a support inE , then both F(−)
S and F(∼)

S are local filters.

Proof: We now prove thatF (−)
S is a local filter. Without loss of generality, we

suppose thatS is a proper support. Let1(p, qB r ) is a right triangle.
We claim that ifa ∈ F (−)

s , b ∈ E , anda ≤ b, thenb ∈ F (−)
s . In fact, bya ≤ b,

we haveb− ≤ a−. Sincea− /∈ S, by Theorem 3.2,b− is not inS, that is,b ∈ F (−)
s .

Then if r ∈ F (−)
s , we have thatp+ r, q + r ∈ F (−)

s .
Now let p+ r, q + r ∈ F (−)

S . By [q + (p+ r )]− + q + (p+ r ) = 1, we get
(p+ r )− = [q + (p+ r )]− + q. As p+ r ∈ F (−)

S , that is, (p+ r )− /∈ S, it follows
that [q + (p+ r )]− + q /∈ S. Then we can infer thatq /∈ S. By q + r ∈ F (−)

S ,
we have [p+ (q + r )]− + p = (q + r )− /∈ S. Sincer− = [( p+ q + r )− + p] +
q andS is a support, it follow thatr− /∈ S, i.e.r /∈ F (−)

s .
With the same argument one can show thatF (∼)

s is also a local filter. ¤

To introduce that definition of local ideals in pseudoeffect algebras we need
the following result.
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Theorem 3.9. Let F be a nonempty subset ofE , then F∼ is a local filter if and
only if F− is a local filter.

Proof: Suppose thatF∼ is a local filter, and1(p, qBr ) is a right triangle inE .
If r ∈ F−, thenr∼∼ ∈ F∼. Sincer∼∼ ≤ (p+ r )∼∼, (q + r )∼∼, we have that

(p+ r )∼∼, (q + r )∼∼ ∈ F∼ asF∼ is a local filter. Then (p+ r )∼, (q + r )∼ ∈ F ,
which yields thatp+ r, q + r ∈ F−.

Now suppose thatp+ r, q + r ∈ F−. Then (p+ r )∼∼, (q + r )∼∼ ∈ F∼.
Sincer∼∼ ≤ (p+ r )∼∼, (q + r )∼∼, we can finda, b ∈ E such thata+ r∼∼ =
(p+ r )∼∼ andb+ r∼∼ = (q + r )∼∼.

We now show that triple{a, b, r ∼∼} is a right triangle.
From a+ r∼∼ = (p+ r )∼∼, we have r∼∼ = [( p+ r )∼ + a]∼. Then

(p+ r )∼ + a = r∼, furthermore,a = [r + (p+ r )∼]∼. Since1(p, qBr ) is a
right triangle, so p+ (q + r ) exists in E , and so q + r ≤ p∼. Obviously,
p∼ = r + (p+ r )∼, hence q + r ≤ r + (p+ r )∼, equivalently, [r + (p+
r )∼]∼ ≤ (q + r )∼. It follows that a = [r + (p+ r )∼]∼ ≤ (q + r )∼ = [(q +
r )∼∼]− = (b+ r∼∼)−, hence a+ (b+ r∼∼) exists in E . Similarly, we can
prove that b+ (a+ r∼∼) exists in E , and so {a, b, r∼∼} is a right
triangle.

SinceF∼ is a local filter, anda+ r∼∼, b+ r∼∼ ∈ F∼, thenr∼∼ ∈ F∼, it
follows thatr ∈ F−, which completes the proof. ¤

We are now in a position to define.

Definition 3.10 A nonempty subsetI of E is called a local ideal ifI − (equiva-
lently, I ∼) is a local filter.

By Theorem 2.7, it is obvious that every ideal in pseudoeffect algebra is a
local ideal.

If Sbe a support inE , we let IS = E\S= {p ∈ E : p /∈ S}.

Theorem 3.11. Let S be a support inE , then IS is a local ideal.

Proof: Note that I ∼S = F (−)
S . By Theorem 3.8, we have thatIS is a local

ideal. ¤
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